Cabling and Bracing Standard Proposed Revision

This is an excerpt from the draft version of the ANSI standard for supplemental support systems – cabling and bracing – used in tree care that is currently open for public review. The review period opened Feb. 10 and closes March 27, 2006. The entire proposed revision, along with instructions for submitting comments, can be downloaded on the Web at www.treecareindustry.org/Public/gov_standards_review.htm. Scroll down to “Current Public Review Documents” and click as directed.

Contents:
Foreword
1 ANSI A300 standards scope, purpose, application, and implementation
30 Part 1 – Supplemental Support Systems standards
31 Normative references
32 Definitions
33 Supplemental Support Systems practices
34 Supplemental Support Systems inspection and maintenance
Annex A Additional hardware information
Annex B Supplemental Support Systems specification flow chart
Annex C Applicable ANSI A300 interpretations

The Foreword, Scope and Purpose are not included here, but explain what an ANSI standard is, that it is intended as a guide in the drafting of maintenance specifications for public and private authorities, how it should be used, and that this public review document is not intended for trial use.

30 Part 3 – Supplemental Support Systems standards
30.1 Purpose
The purpose of this clause is to provide standards for writing specifications for supplemental support systems.

30.2 Reasons for supplemental support systems
Supplemental support systems are used to provide additional support or limit movement of a tree or tree part.

30.3 Safety
30.3.1 Tree maintenance shall only be performed by an arborist or arborist trainee.

30.3.2 This standard shall not take precedence over arboricultural safe work practices.

30.3.3 Operations shall comply with applicable Occupational Safety and Health Administration (OSHA) standards, ANSI Z133.1, as well as state and local regulations.

31 Normative references
The following standards contain provisions which, through reference in the text, constitute provisions of this American National Standard. All standards are subject to revision, and parties to agreements based on this American National Standard shall apply the most recent edition of the standards indicated below. (See entire revision for list of references)

32 Definitions
32.1 amon-eye nut: A drop-forged eye nut.
32.2 anchor: A cable to tree attachment.
32.3 anchor-tree: A tree used as an anchor in guying.
32.4 arborist: An individual engaged in the profession of arboriculture who, through experience, education and related training, possesses the competence to provide for, or supervise the management of, trees and other woody ornamentals.
32.5 arborist trainee: An individual undergoing on-the-job training to obtain the experience and the competence required to provide for, or supervise the management of, trees and woody ornamentals. Such trainees shall be under the direct supervision of an arborist.

32.6 bond: An electrical connection between an electrically conductive object and a component of a lightning protection system that is intended to significantly reduce potential differences created by lightning currents.

32.7 bracing: The installation of lag-thread screw or threaded-steel rods in limbs, leaders, or trunks to provide supplemental support.
32.8 cable: 1) Zinc coated strand per ASTM A-475 for dead-end grip applications. 2) Wire rope or strand for general applications. 3) Synthetic-fiber rope or synthetic-fiber webbing for general applications.
32.9 cable grip: A mechanical device that temporarily grasps and holds a cable during installation.

32.10 cabling: The installation of a steel wire rope, steel strand, or synthetic fiber system between leaders, limbs, and branches within a tree.

32.11 compartmentalization: Physiological process that creates the chemical and physical boundaries that act to limit the spread of disease and decay organisms.

32.12 connector clamp: A device meeting ANSI/UL-96 standard, used to bond a conductor to a steel cable.

32.13 dead-end brace: A brace formed by threading a lag-thread screw rod directly into the limb, leader, or trunk, but not through the side opposite the installation.

32.14 dead-end grip: A manufactured wire wrap designed to form a termination in the end.
32.15 dead-end hardware: Anchors or braces that are threaded directly into the tree but not through the side opposite the installation. Dead-end hardware includes but is not limited to: lag hooks, lag eyes, and lag-thread screw rod.

32.16 eye bolt: A drop-forged, closed-eye bolt.

32.17 eye splice: A closed-eye termination formed into common grade cable by bending it back on itself and winding each wire around the cable a minimum of two complete turns.

32.18 ground anchor: A cable to ground attachment.

32.19 guying: The installation of a steel cable or synthetic-fiber cable system between a tree and an external anchor to provide supplemental support.

32.20 lag eye: A lag-thread, drop-forged, closed-eye anchor.

32.21 lag hook (J-hook): A lag-thread, J-shaped anchor.

32.22 lag thread: A coarse screw thread designed for self tapping.

32.23 lag-thread hardware: Anchors or braces with lag-threads. Lag-thread hardware includes, but is not limited to, lag eyes, lag hooks, and lag-thread screw rod.

32.24 lag-thread screw rod: A lag-thread, steel rod used for dead-end and through-brace installations.

32.25 machine thread: A fine screw thread designed for fittings (such as nuts).

32.26 machine-threaded rod: A machine-thread, steel rod used for through-brace installations.

32.27 peen: The act of bending, rounding or flattening the fastening end(s) of through-hardware for the purpose of preventing a nut from “backing-off.”

32.28 prop: Rigid support placed between a trunk, limb, or branch and the ground.

32.29 propping: The installation of a prop.

32.30 shall: As used in this standard, denotes a mandatory requirement.

32.31 should: As used in this standard, denotes an advisory recommendation.

32.32 specifications: A document stating a detailed, measurable plan or proposal for provision of a product or service.

32.33 standards, ANSI A300: Performance parameters established by industry consensus as a rule for the measure of quantity, weight, extent, value, or quality.

32.34 supplemental support system: A system designed to provide additional support or limit movement of a tree or tree part.

32.35 swage: A crimp-type holding device for wire rope.

32.36 swage stop: A device used to seal the end of cable.

32.37 taut: Tightened to the point of eliminating visible slack.

32.38 termination: A device or configuration that secures the end of a cable to the anchor in a cabling or guying installation.

32.39 termination hardware: Hardware used to form a termination. Termination hardware includes, but is not limited to, dead-end grips, thimbles used in eye-splice configurations, and swages.

32.40 thimble: An oblong galvanized or stainless steel fitting with flared margins and an open-ended base.

32.41 through-brace: A brace formed by installing through-hardware into a limb, leader, or trunk completely through the side opposite the installation.

32.42 through-hardware: Anchors or braces that pass completely through the limb, leader, or trunk, secured with nuts and heavy-duty washers. Through-hardware includes but is not limited to: eyebolts, lag-thread screw rod, and threaded-steel rod.

32.43 turnbuckle: A drop-forged, closed-eye device for adjusting tension.

32.44 wedge-type ferrule: A tapered device for terminating and anchoring a cable or strand.

32.45 wire rope clamps: A clamp consisting of a “U” bolt, saddle plate, and fastening nuts.

33 Supplemental support system practices

33.1 Supplemental support system objectives

Objectives for supplemental support systems shall be clearly defined prior to installation.

33.2 Tree inspection

33.2.1 A qualified arborist or arborist trainee shall visually inspect each tree before beginning work.

33.2.2 Structural integrity and potential changes in tree dynamics shall be considered prior to installing a supplemental support system.

33.2.3 If a condition is observed requiring attention beyond the original scope of work, the condition shall be reported to an immediate supervisor, the owner, or the person responsible for authorizing the work.

33.3 Tools and equipment

33.3.1 Climbing spurs shall not be used when climbing trees to install supplemental support systems, except in the case of emergencies, such as...
33.4.6 Protection Systems. Cables or guys to the lightning protection system shall be used to bond steel connector clamps, designed for use in lightning protection systems, shall be used to form terminations in cables larger than 1/8 inch (3 mm). Synthetic fiber cable systems shall be ultra-violet (UV) light resistant. Wire rope clamps shall not be used to form terminations in cables. Treatment of cavities by filling, shall not be considered to provide support. Longitudinal alignment of anchors and/or braces should be avoided.

33.4 General
33.4.1 System design shall be specified. When necessary to reach the objective, pruning should be performed prior to installing a supplemental support system. Pruning shall be in accordance with ANSI A300 Part 1 – Pruning. Prior to installation, the owner or owner’s agent should be notified of the need for periodic inspection by an arborist. Inspections shall be the responsibility of the tree owner and should include supplemental support system: condition; position; cable tension; and the tree’s structural integrity. Anchors and braces shall not be installed into decayed areas where sound wood is less than 30 percent of the trunk or branch diameter (refer to Fig. 33.4.4). Steel cables or guys in trees with existing lightning protection conductors, shall be bonded to the lightning protection system. A connector clamp, designed for use in lightning protection systems, shall be used to bond steel cables or guys to the lightning protection system refer to ANSI A300 Part 4 – Lightning Protection Systems. Supplemental support systems shall be installed in compliance with minimum distance Table 1 in ANSI Z133.1 for overhead, energized conductors. Steel hardware shall be corrosion resistant. Synthetic fiber cable systems shall be ultra-violet (UV) light resistant. Wire rope clamps shall not be used to form terminations in cables larger than 1/8 inch (3 mm). Treatment of cavities by filling, shall not be considered to provide support. Longitudinal alignment of anchors and/or braces should be avoided.

33.5 Installation practices
33.5.1 Holes should not be drilled closer together than the diameter of the branch or trunk being drilled or 12 inches whichever is less. The diameter of the hole shall not be greater than 1/6 the diameter of the limb, trunk, or branch at the point of installation. Longitudinal alignment of anchors and/or braces should be avoided.

33.6 Cabling
33.6.1 Cabling objectives Cabling objectives shall be established prior to beginning any cabling operation. Cabling types Cabling system specifications should include one or more of the following types:

33.6.2.1 Direct: Direct cabling consists of a single cable between two tree parts (three direct cables shown).
33.6.2.2 Triangular: Consists of connecting tree parts in combination of threes. This method should be preferred, when maximum support is required (two triangular systems shown).

33.6.2.2.1 Location of hardware shall be specified.

33.6.2.3 Box: Consists of connecting four or more tree parts in a closed series. This system should be used only when minimal direct support is needed.

33.6.2.3.1 Location of hardware shall be specified.

33.6.2.4 Hub and Spoke: Consists of a center attachment (hub) with spans (spokes) of cable radiating to three or more leaders. Hub and Spoke cabling should only be used when other installation techniques cannot be installed.

33.6.2.4.1 Location of hardware shall be specified.

33.6.3 Cabling installation

33.6.3.1 Steel cables should be taut following installation.

33.6.3.2 Anchor(s) should be installed at or near a point two-thirds (2/3) of the length/height of the limb or leader to be supported, measured from the trunk or (refer to Fig. 33.6.3.2).

33.6.3.3 The correct angle of cable installation should be perpendicular to an imaginary line bisecting the angle between the tree parts being cabled (refer to Fig. 33.6.3.2).

33.6.3.4 If existing cables are to be replaced, they shall not be removed until the new system is installed.

33.7 Bracing

33.7.1 Bracing objectives

Bracing objectives shall be established prior to beginning any bracing operation.

33.7.2 Bracing types

Bracing system specifications should include one or more of the following types:

33.7.2.1 Single: Single bracing consists of one installed rod.

33.7.2.2 Parallel: Parallel bracing consists of two or more rods installed in vertical and directional alignment.

33.7.2.3 Alternating: Alternating bracing consists of two or more rods installed in directional alignment but not in vertical alignment.

33.7.2.4 Crossing: Crossing bracing consists of two or more rods installed in a non-aligned pattern.

33.7.3 Bracing installation

33.7.3.1 A cabling system should be used to provide supplemental support for the limbs forming the crotch being braced.

33.7.3.2 The preferred location for a single rod for a non-split crotch, should be one to two times the branch diameter above the crotch.

33.7.3.3 Braces using multiple rods shall have at least one rod installed above the crotch.

33.7.3.4 Bracing shall be installed in either a through-brace or dead-end brace configuration.

33.7.3.5 The minimum hardware requirements for braces should be in accordance with the following table:

33.7.3.6 Through-bracing

33.7.3.6.1 Through-braces shall be used when bracing through decayed area/wood or in trees that are poor compartmentalizers or have weak wood characteristics.

33.7.3.6.2 Through braces shall be terminated
33.7.3.7 Dead-end bracing

33.7.3.7.1 Dead-end bracing shall be performed with lag-thread screw rod.

33.7.3.7.2 The brace shall be installed completely through the smaller or equal portion and at least halfway into the other portion (see Fig. 33.7.3.7.2).

33.7.3.7.3 The exposed end of the lag-thread screw rod shall be inside the bark or shall be fastened with a heavy duty or heat-treated washer and a nut (see Fig. 33.7.3.7.2).

33.8 Propping

33.8.1 Propping objectives

Propping objectives shall be established prior to beginning any propping operation.

33.8.2 Propping installation

33.8.2.1 Props shall be of sufficient strength to hold the intended load.

33.8.2.2 Props shall be fastened to the branch in such a manner as to minimize damage and prevent the branch from falling off the prop.

33.8.2.3 Props shall be constructed in a manner so as not to restrict future growth of the branch.

33.8.2.4 Equipment and work practices that damage roots beyond the scope of the work shall be avoided.

33.8.2.5 Props shall be secured to the ground.

33.9 Guying established trees

33.9.1 Guying established trees, objectives

Objectives for guying established trees shall be established prior to beginning any guying operation.

33.9.2 Guying established trees, types

Specifications for guying established trees should include one or more of the following types:

33.9.2.1 Tree-to-ground: Tree-to-ground guying consists of installing at least one cable between a ground anchor and the tree to be guyed.

33.9.2.2 Tree-to-tree: Tree-to-tree guying consists of installing at least one cable between an anchor-tree and the tree to be guyed.

33.9.3 Safety

Public safety shall be considered in all aspects of guying.

33.9.4 Guying installation

33.9.4.1 Hardware shall be installed so that it is in alignment with the angle of pull from the guy.

33.9.4.2 Permanent guys shall be attached to the tree with dead-end hardware or through-hardware.

33.9.4.3 Tree-to-ground guying

33.9.4.3.1 Guys shall be secured to a ground-anchor(s) sufficient to achieve the objective.

33.9.4.3.2 Guys should be attached to the tree at or above a point not less than one-half the height of the tree.

33.9.4.3.3 Ground-anchor(s) should be placed

Stump Cutters

Carbide Tipped

Buy from the Original Manufacturer

Established 1954

1-800 421-5985

Now Manufacturing and Distributing “STUMP CLAW TEETH”

Border City Tool & Manufacturing Co.

23325 BLACKSTONE • WARREN, MI 48093-2675
(586) 798-5674 • 1-800-421-5985 • FAX (586) 798-7329

Please circle 16 on Reader Service Card

TREES CARE INDUSTRY – MARCH 2006
no closer to the trunk than two-thirds the distance from the ground to the height of the lowest point of attachment in the tree.

33.9.4 Tree-to-tree guying

33.9.4.1 Anchor-tree(s) shall be inspected for structural integrity.

33.9.4.2 Anchor-tree(s) shall have the ability to meet the objective.

33.9.4.3 Anchors shall be attached in the upper half of the tree to be guyed and in the lower half of the anchor-tree(s).

33.10 Guying newly installed landscape plants

33.10.1 Guying newly installed landscape plants, objectives
Guying objectives shall be established prior to beginning any guying operation.

33.10.2 Guying installation

33.10.2.1 Guys shall be attached using a method that limits damage to the trunk and branches.

33.10.2.2 A minimum of two guys should be installed at an angle sufficient to support the landscape plant.

33.10.2.3 For trees over 10-inch diameter, guys should be installed in accordance with subclause 33.9.

Table 1: Minimum hardware requirements for bracing trees.

<table>
<thead>
<tr>
<th>Diameter at Brace (in inches)</th>
<th>Brace Rod Diameter (in inches)</th>
<th>Minimum number of rods with split or included bark</th>
<th>Minimum number of rods with no apparent split or included bark</th>
</tr>
</thead>
<tbody>
<tr>
<td><5</td>
<td>1/4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5–8</td>
<td>3/8</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8–14</td>
<td>1/2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>14–20</td>
<td>5/8</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>20–40</td>
<td>3/4</td>
<td>3 min. with one additional for each 8” in excess of 30”</td>
<td>2 min. with one additional for each 8” in excess of 30”</td>
</tr>
<tr>
<td>>40</td>
<td>7/8</td>
<td>4 min. with one additional for each 8” in excess of 40”</td>
<td>3 min. with one additional for each 12” in excess of 40”</td>
</tr>
</tbody>
</table>

34 Supplemental support system inspection and maintenance

34.1 Systems should be inspected periodically for wear, corrosion, degradation of hardware and damage to the tree.

34.2 If problems are detected they should be corrected or the system should be repaired, replaced or modified.

Annexes not included here. For the complete revision, visit http://www.treecareindustry.org/Public/gov_standards_review.htm.